Member Descriptions [name, end point names, weight (if in objective function), second power of length (if a constraint), member category, Obj/Con/Exc (put in objective function, use as a constraint or exclude from computations), flags] For assembly purposes, only the name and end point names are of interest. The other information may be of interest after A Practical Guide to Tensegrity Design has been consulted. <Member> strut0103 p01A p03c 0.0 1.0 1 Con CalcClear Inelastic * <Member> strut0204 p02A p04a 0.0 1.0 1 Con CalcClear Inelastic * <Member> strut0305 p03A p05c 0.0 1.0 1 Con CalcClear Inelastic * <Member> strut0406 p04A p06a 0.0 1.0 1 Con CalcClear Inelastic * <Member> strut0507 p05A p07c 0.0 1.0 1 Con CalcClear Inelastic * <Member> strut0608 p06A p08a 0.0 1.0 1 Con CalcClear Inelastic * <Member> strut0709 p07A p09c 0.0 1.0 1 Con CalcClear Inelastic * <Member> strut0810 p08A p10a 0.0 1.0 1 Con CalcClear Inelastic * <Member> baset p01A p01B 1.0 3/11 10 Obj * <Member> apext p10a p10b 1.0 3/11 10 Obj * <Member> guy1 p01A p03b 0.54 sqr(0.852438) 3 Con * <Member> guy2 p02A p04b 0.54 sqr(0.852438) 3 Con * <Member> guy3 p03A p05b 0.54 sqr(0.852438) 3 Con * <Member> guy4 p04A p06b 0.54 sqr(0.852438) 3 Con * <Member> guy5 p05A p07b 0.54 sqr(0.852438) 3 Con * <Member> guy6 p06A p08b 0.54 sqr(0.852438) 3 Con * <Member> guy7 p07A p09b 0.54 sqr(0.852438) 3 Con * <Member> guy8 p08A p10b 0.54 sqr(0.852438) 3 Con * <Member> TL0102 p01A p02B 0.55 sqr(0.697289) 4 Con * <Member> TS0203 p02A p03b 1.45 sqr(0.374736) 2 Con * <Member> TL0203 p02A p03A 0.55 sqr(0.697289) 4 Con * <Member> tS0203 p02A p03a 1.45 sqr(0.374736) 2 Con * <Member> TS0304 p03A p04a 1.45 sqr(0.374736) 2 Con * <Member> TL0304 p03A p04B 0.55 sqr(0.697289) 4 Con * <Member> tS0304 p03A p04b 1.45 sqr(0.374736) 2 Con * <Member> tL0304 p03a p04a 0.55 sqr(0.697289) 4 Con * <Member> TS0405 p04A p05a 1.45 sqr(0.374736) 2 Con * <Member> TL0405 p04A p05A 0.55 sqr(0.697289) 4 Con * <Member> tS0405 p04A p05b 1.45 sqr(0.374736) 2 Con * <Member> tL0405 p04a p05b 0.55 sqr(0.697289) 4 Con * <Member> TS0506 p05A p06a 1.45 sqr(0.374736) 2 Con * <Member> TL0506 p05A p06B 0.55 sqr(0.697289) 4 Con * <Member> tS0506 p05A p06b 1.45 sqr(0.374736) 2 Con * <Member> tL0506 p05a p06a 0.55 sqr(0.697289) 4 Con * <Member> TS0607 p06A p07a 1.45 sqr(0.374736) 2 Con * <Member> TL0607 p06A p07A 0.55 sqr(0.697289) 4 Con * <Member> tS0607 p06A p07b 1.45 sqr(0.374736) 2 Con * <Member> tL0607 p06a p07b 0.55 sqr(0.697289) 4 Con * <Member> TS0708 p07A p08a 1.45 sqr(0.374736) 2 Con * <Member> TL0708 p07A p08B 0.55 sqr(0.697289) 4 Con * <Member> tS0708 p07A p08b 1.45 sqr(0.374736) 2 Con * <Member> tL0708 p07a p08a 0.55 sqr(0.697289) 4 Con * <Member> TS0809 p08A p09b 1.45 sqr(0.374736) 2 Con * <Member> tS0809 p08A p09a 1.45 sqr(0.374736) 2 Con * <Member> tL0809 p08c p09a 0.55 sqr(0.697289) 4 Con * <Member> tL0910 p09a p10a 0.55 sqr(0.697289) 4 Con * In-Situ Member Lengths These are the lengths of the members when they are in place and prestress is applied. These are raw unadjusted values and assume the hubs of the structure are single points. The values are in model units. strut0103: 1 strut0204: 1 strut0305: 1 strut0406: 1 strut0507: 1 strut0608: 1 strut0709: 1 strut0810: 1 baset: 0.505516 apext: 0.505516 guy1: 0.852438 guy2: 0.852438 guy3: 0.852438 guy4: 0.852438 guy5: 0.852438 guy6: 0.852438 guy7: 0.852438 guy8: 0.852438 TL0102: 0.697289 TS0203: 0.374736 TL0203: 0.697289 tS0203: 0.374736 TS0304: 0.374736 TL0304: 0.697289 tS0304: 0.374736 tL0304: 0.697289 TS0405: 0.374736 TL0405: 0.697289 tS0405: 0.374736 tL0405: 0.697289 TS0506: 0.374736 TL0506: 0.697289 tS0506: 0.374736 tL0506: 0.697289 TS0607: 0.374736 TL0607: 0.697289 tS0607: 0.374736 tL0607: 0.697289 TS0708: 0.374736 TL0708: 0.697289 tS0708: 0.374736 tL0708: 0.697289 TS0809: 0.374736 tS0809: 0.374736 tL0809: 0.697289 tL0910: 0.697289 Relative Member Force Magnitudes These values are useful for developing an assembly strategy for the structure. The tighter tendons are much easier to tie in place early on, while the looser tendons can be left to the last. This information is also used to adjust tendon lengths since the measured length of a tendon will be shorter for a highly-stressed tendon with the same in-situ length as a tendon which is not so stressed. strut0103: -2.6827 strut0204: -4.15143 strut0305: -5.21769 strut0406: -5.77801 strut0507: -5.77801 strut0608: -5.21769 strut0709: -4.15143 strut0810: -2.6827 baset: 0.505516 apext: 0.505516 guy1: 0.981182 guy2: 1.51838 guy3: 1.90839 guy4: 2.11335 guy5: 2.11335 guy6: 1.90839 guy7: 1.51838 guy8: 0.981182 TL0102: 1.47524 TS0203: 1.69599 TL0203: 1.72623 tS0203: 1.16793 TS0304: 2.15481 TL0304: 1.80983 tS0304: 1.77144 tL0304: 0.556645 TS0405: 2.20323 TL0405: 1.71791 tS0405: 2.40469 tL0405: 1.05936 TS0506: 2.42136 TL0506: 1.45939 tS0506: 2.42136 tL0506: 1.45939 TS0607: 2.40469 TL0607: 1.05936 tS0607: 2.20323 tL0607: 1.71791 TS0708: 1.77144 TL0708: 0.556645 tS0708: 2.15481 tL0708: 1.80983 TS0809: 1.16793 tS0809: 1.69599 tL0809: 1.72623 tL0910: 1.47524 Average tendon prestress force magnitude: 1.61320
Tensegrity Tower with Point Labels |
Tensegrity Tower Schematic |
Loaded Member Force Magnitudes This is not relevant to assembly. I wanted to look at what the effects of gravity on the structure might be. I assumed the tendon material extends 1% at the average tendon prestress force magnitude and that the struts weigh 15% of the average tendon prestress force magnitude. Like the numbers for Relative Member Force Magnitudes, these would have to be scaled to have any physical meaning, but comparing how the values change relative to Relative Member Force Magnitudes is meaningful. The same scale factor would be used for both tables. For example, if the average prestress force magnitude is 1000 pounds, a scale value of 1000/1.61320 would be applied to this table and Relative Member Force Magnitudes. In that case, the struts would weigh 150 pounds. strut0103: -3.86364 strut0204: -6.02911 strut0305: -7.03645 strut0406: -7.09663 strut0507: -6.66567 strut0608: -5.78367 strut0709: -4.48091 strut0810: -2.86052 baset: 0.810677 apext: 0.546486 guy1: 0.110407 guy2: 1.57784 guy3: 2.02596 guy4: 2.09981 guy5: 2.04652 guy6: 1.83663 guy7: 1.46952 guy8: 1.00994 TL0102: 1.57397 TS0203: 2.86836 TL0203: 1.89178 tS0203: 2.106 TS0304: 3.30393 TL0304: 1.82107 tS0304: 2.94701 tL0304: 0.405727 TS0405: 3.1922 TL0405: 1.65934 tS0405: 3.26805 tL0405: 1.21886 TS0506: 3.03293 TL0506: 1.38832 tS0506: 3.14162 tL0506: 1.61688 TS0607: 2.90316 TL0607: 0.999799 tS0607: 2.61965 tL0607: 1.79607 TS0708: 2.02858 TL0708: 0.531311 tS0708: 2.47261 tL0708: 1.83638 TS0809: 1.30321 tS0809: 1.86987 tL0809: 1.72925 tL0910: 1.48497
structure file: obelisk3/x3l8obelisk4.rc variable file: obelisk3/x3l8obelisk4.dat |
CONTACT:
Bob Burkhardt
Tensegrity Solutions
Box 426164
Cambridge, MA 02142-0021
USA
e-mail: bobwb@juno.com