
The Application of Nonlinear Programming to the
Design and Validation of Tensegrity Structures

with Special Attention to Skew Prisms

Robert Burkhardt, Tensegrity Solutions
P.O. Box 426164, Cambridge, MA 02142-0021

USA

email: bobwb@juno.com

Version 3.06
February 23, 2006

Abstract

The application of nonlinear programming to the validation and design of
floating-compression tensegrity structures is motivated and described. A design for a
skew three-prism is validated using nonlinear programming. A general and simple
nonlinear programming method for designing skew prisms is described. The method
is applied to the design of a skew three-prism. Validation of a design for a skew
four-prism fails. Alternatives for fixing the design are explored. Nonlinear
programming problem solutions indicate that skew prisms with equilateral ends can
be designed using simple non-iterative closed-form formulas. A revision history for
this paper can be found at http://bobwb.tripod.com/skew/revisions.html.

Keywords: tensegrity, floating compression, validation, skew, prism,
nonlinear programming, design

1 Introduction

Floating-compression tensegrity structures were introduced by Kenneth Snelson[6],
Buckminster Fuller[4] and David Georges Emmerich[3]. Figure 1 illustrates a simple
example. It manifests three defining characteristics of floating-compression tensegrity
structures:

1



• It is pin-jointed.

• At each joint, only one strut is present.

• Purely tensile elements are critical to the structure’s stability – removing or loosening
any of the critical tensile elements destabilizes the structure.

In addition, although this is not readily evident in Figure 1, the structure is prestressed.

Floating-compression tensegrity structures pose a special problem for the designer: if the
length of a tendon chosen to connect two joints is not as short as possible given the lengths
of the other struts and tendons, the tendon will be loose and the structure will not be
stable. In addition, if the length of a strut chosen to connect two joints is not as long as
possible given the lengths of the other struts and tendons, the strut will be loose and the
structure will not be stable. Although the instability caused by a single incorrectly chosen
member length can be very local for structures like large double-layer domes, in any case
the relative positions of the joints in a design must be carefully chosen so all tendons are
minimum length and all struts are maximum length if those relative positions are to be
maintained in any realization.

This conception of floating-compression tensegrity structures makes the simplifying
assumption that the members of the structure are completely inelastic. A design realized
using highly elastic tendons will have much more latitude in specifying the relative
positions of the joints. However, realizations of such a design will most likely not precisely
duplicate the relative positions of the joints, if indeed the positions of the joints are
precisely described at the design stage. Such designs and realizations may be suitable for
very early prototyping explorations (see Ref. [8] for an example). Once the basic topology
of a floating-compression design is understood, even in the case where highly elastic
tendons are used in the final realization, the precise control of design realizations make the
inelasticity assumption at the form-finding stage of design very useful.

The methodology of nonlinear programming is mature and well understood.[1] It is
mentioned briefly as a method for form-finding for tensegrity structures in Tibert and
Pelligrino[9] and examined in detail as a tensegrity form-finding methodology in
Burkhardt[2]. The basic nonlinear programming problem is to minimize a scalar-valued
nonlinear function of several variables while conforming to zero or more constraints. Each
constraint requires a scalar-valued nonlinear function of these variables, and possibly
additional variables, to satisfy an equality or inequality relationship with respect to some
constant target value. All the variables, the ones that appear in the objective function
along with others that possibly appear only in constraints, are referred to as control
variables.

Bertsekas[1] and Burkhardt[2] describe procedures for solving this problem. In Burkhardt,
the constrained problem is transformed into an unconstrained problem using either a

2



penalty method or what is called in Burkhardt an “exact” method. Minimization iterations
are then done using conjugate direction techniques when far away from a solution to the
nonlinear programming problem, or the multivariate form of the Newton method when
close to a solution. Newton iterations are done close to a solution since they offer the best
accuracy. See Bertsekas for a detailed description of conjugate direction and Newton
techniques. Conjugate direction methods involve a sequence of line searches, while the
multivariate Newton method involves the solution of simultaneous equations. In a line
search, a specific line is chosen emanating from the current variable values, and a point
along that line where the objective function achieves a minimum value is found. The
specific conjugate direction method being used will specify how successive line-search
directions should be chosen so that convergence to a minimum solution for the
programming problem is rapid.

The exact method is described in Burkhardt and involves solving the constraints for a
carefully chosen subset of the control variables. The number of variables in this subset will
be the same as the number of constraints. The variables in the complement of this subset
are then used as control variables for the unconstrained problem. This partitioning of the
control variables is dynamic and usually changes in the course of solving the problem as
the configuration of the structure changes. Newton’s method is used to solve the
constraints. Since Newton’s method many times will not converge when the values are not
close to a solution for the constraint equations, there is usually an upper bound on the step
sizes which can be used when doing line searches required by the conjugate-direction being
used. The exact method involves two levels of iteration: at the lower level, Newton
iterations are used to solve the constraint equations; at the higher level, conjugate direction
iterations are used to move the variable values toward a minimum solution for the
nonlinear programming problem.

In many situations, the initial values for the nonlinear programming problem may be such
that some or all of the constraint equations are not satisfied. It is very possible that these
initial values are far enough away from a solution for the constraint equations that the
Newton iterations used to solve the constraint equations will not converge. In these cases,
the exact method is therefore not feasible for the initial conjugate direction line searches;
so, the penalty method must be used instead of the exact method to convert the
constrained problem to an unconstrained one that the conjugate direction line searches can
be applied to. After a sufficient number of line searches are done using the penalty method,
the variables will be close enough to solving the constraint equations and Newton iterations
to solve the constraint equations will converge. This allows the exact method to be used
though certainly iterations can continue using the penalty method. Exploring under
exactly what circumstances, if any, the penalty method should be discarded in favor of the
exact method would probably be useful, but is beyond the scope of this paper. The penalty
method and Newton method are described in Bertsekas.

3



Burkhardt (Section 7.2.6) also presents a proof that any tensegrity structure can be viewed
as the solution of a nonlinear programming problem, thus demonstrating the generality of
nonlinear programming as a method for tensegrity form finding. Nonlinear programming
seems a good fit for the design of floating-compression tensegrity structures, since, as
mentioned, the stability of these structures requires that certain extremal conditions be
met. Using a pedagogical technique similar to that of Motro et al.[7], this paper examines
the application of nonlinear programming methodology to the creation and validation of
tensegrity designs in the context of detailed examples pertaining to skew prisms. In the
process, it comments on results in Motro et al. and presents a general method for the
design of skew prisms using nonlinear programming.

2 Validation of a Skew Prism Design Using Nonlinear

Programming

Regular tensegrity prisms are described and mathematically examined in Kenner[5]. Skew
tensegrity prisms were introduced in Motro et al.[7]. Due to symmetry, the points of the
two ends of a regular tensegrity prism fall into two parallel planes. For the purposes of this
paper, skew tensegrity prisms will be restricted to retain this feature. Regular tensegrity
prisms are viewed as a special sort of skew prism where a perpendicular through the center
of one end of the prism is parallel to, and coincident with, a perpendicular through the
center of the other end. For a prism to be strictly skew, the perpendiculars are still
parallel, but are not coincident. A skew three-prism is illustrated in Figure 1. The vertices
are labeled the same as in Fig. 5 of Motro et al. Member labels have also been added.
Member names correspond to those used in Motro et al.

Motro et al. explored the application of the force-density method of form-finding for
tensegrity structures to the design of skew tensegrity prisms. That paper presented results
for two skew-prism designs. The problem for a researcher attempting to independently
validate these designs is that the validity of the designs cannot be ascertained by merely
viewing them. The geometry of the structure must be tested to see if it meets the extremal
criteria appropriate to a floating-compression tensegrity structure. Here it is shown how
nonlinear programming can be applied to do this validation.

In a nonlinear programming problem, the value of the objective function is minimized
subject to certain constraints. The necessary condition for stability of a tensegrity
structure can be precisely fitted into this format. To validate a design, the objective
function is the length of a single member. The constraints are the lengths of the other
members of the structure as specified in the design.

For a valid tensegrity structure, the length that results from solving the nonlinear

4



programming problem should match the length specified by the design. First consider the
case when the member is a tendon. If the length specified by the design is significantly
smaller than the solution length, then the design is not feasible and hence invalid. If the
length specified by the design is significantly larger, then the tendon will be loose since the
solution to the nonlinear programming problem has shown that a smaller length is feasible,
hence the other elements can move around to loosen the tendon. The design is invalid since
the tendon is not prestressed.

For the case when a strut length appears in the objective function, it appears as the
additive inverse of the value. Thus when the objective function value is minimized, the
strut length is maximized. If the length specified by the design is significantly larger than
the solution length, then the design is not feasible and hence invalid. If the length specified
by the design is significantly smaller, then the strut will be loose since the solution has
shown that a larger length is possible. The design is invalid since some tendons will not be
prestressed as a consequence of the loose strut.

For the skew three-prism from Motro et al., the stated results from the application of the
force-density method were verified by using the following mathematical programming
problem:

5



minimize l24(c)
P1, ..., P6

subject to Tendon constraints:

1 ≥ l21(c)
1 ≥ l22(c)
1 ≥ l23(c)

1.6412 ≥ l25(c)
1.3602 ≥ l26(c)

Strut constraints:

2.0242 ≤ l27(s)
2.1612 ≤ l28(s)
0.9692 ≤ l29(s)

Tendon constraints:

1 ≥ l210(c)
1 ≥ l211(c)
1 ≥ l212(c)

Orienting constraints:

y6 = z4 = z5 = z6 = 0

x6 =
√

1
3

y5 = 1
2

The notation lx is used to indicate the length of member x. For example, l4(c) indicates the
length of member 4(c). The value of l4(c) is the distance between the endpoints of 4(c), P3

and P5 (see Table 1). The values for the lengths of the other members are computed
similarly. In this case, the member chosen for the objective function is a tendon. If the
member were a strut, since the convention is to always minimize the objective value, the
negation of its length would be minimized, thus maximizing the length of the strut.

The expression P1, ..., P6 appearing under “minimize” indicates that the coordinate values
of the six vertex points for the prism are the control variables of the minimization problem.
These are the values that are changed (in accordance with the constraints) to find a
minimum value for the objective function, l24(c) in this case.

The member constraints are always stated as inequalities. A strut must maintain a certain

6



minimum distance between two joints, so its constraint states that the strut’s length must
be greater than or equal to a constant target value. A tendon must keep two joints within
a certain distance of each other, so its constraint states that the tendon’s length must be
less than or equal to a constant target value. During computation, for convenience, these
constraints may be treated as equalities. This means the result needs to be checked for
correctness. This can be done easily when member stresses are computed. If a tendon
appears to be in compression, or a strut appears to be in tension, then either the relevant
constraint and corresponding member is discarded, or the target value is adjusted. The
problem is then solved again to see if a more satisfactory solution can be obtained.

Base members 10(c), 11(c) and 12(c) do not appear explicitly in Motro et al., but are
added here for completeness. The orienting constraints do not constrain the geometry of
the prism, but just give the structure an unambiguous orientation in three-dimensional
space. Member lengths are always expressed as second powers since this is more
mathematically tractable. Simple lengths could be used with exactly the same results, but
the computationally expensive process of taking roots would be required and unnecessarily
complicate and slow the computations.

Initial values for the coordinates are needed to start off the iteration procedure. In general,
the initial coordinate values are a reasonable and easily computed initial guess. The closer
the initial guess is to the final answer, and the closer the implied member lengths are to the
constraint target values, the faster the answer will be arrived at. For the nonlinear
programming problem described in this section, the coordinate values for the vertices of a
regular solid triangular prism constituted the initial values for the problem. The radius and
height of the solid triangular prism were chosen so the implied member lengths roughly
approximated the constraint target values. The initial values used can be found in the
columns labeled “Initial” in Table 2.

The solution of the problem yielded a value of 1.303 for l4(c). The difference between this
and the value of 1.302 stated in Motro et al. can be attributed to the effects of rounding.
Applying the procedures described in Section 7.2 of Burkhardt[2] to derive member stresses
also yielded values equivalent to those stated in Motro et al. within ±.006. The final values
for the member lengths and stresses can be found in the columns labeled “(V)” of Table 1.
Table 1 also duplicates the relevant data from Motro et al. in the columns labeled “(M)”.
For reference, the force density values from that paper are also listed. The proportionality
constant t appears next to all stress values since only relative values have any meaning in a
prestressed structure. The final coordinate values can be found in the columns labeled
“(V)” in Table 2. The final coordinate values were used to construct Figure 1.

7



3 Design of a Skew Prism Using Nonlinear

Programming

The above result validated the force-density result, but did not show how a skew prism
could be realistically designed using the nonlinear programming approach. With this in
mind, a general method is proposed for designing skew prisms of any order. The members
are conceptually divided into end members and side members. The end members are all
tendons, and so can be referred to as end tendons as well. The side members are either
struts or side tendons. The method is to constrain any three side member lengths, and
then minimize the sum of second powers of the remaining side-tendon lengths less the sum
of second powers of the remaining strut lengths. All end tendon lengths are always
constrained.

The constraints must be mutually compatible. For example, if a side tendon length and an
adjacent strut length are constrained, the strut length must not be so long that it is greater
than the side tendon’s constrained length plus the length of the end tendon they both
share. (A side tendon is adjacent to a strut if it shares a vertex with the strut.) It is
usually most convenient to constrain strut lengths, but, for the purpose of demonstrating
the method, two strut lengths and a side tendon length are constrained in the example
below. The formulation of the nonlinear programming problem for the design of a skew
three-prism is thus:

8



minimize l25(c) + l26(c) − l27(s)
P1, ..., P6

subject to Tendon constraints:

1 ≥ l21(c)
1 ≥ l22(c)
1 ≥ l23(c)

1.32 ≥ l24(c)

Strut constraint:

22 ≤ l28(s)
1 ≤ l29(s)

Tendon constraints:

1 ≥ l210(c)
1 ≥ l211(c)
1 ≥ l212(c)

Orienting constraints:

y6 = z4 = z5 = z6 = 0

x6 =
√

1
3

y5 = 1
2

In general, when nonlinear programming is applied to design rather than validation, a
weighted sum of second powers of member lengths appears in the objective function
instead of the second power of the length of a single member. The weights, the constraint
target values and how the members are divided between the objective function and the
constraints are chosen according to the design objectives. When nonlinear programming is
applied to the design of skew prisms, the weights in the objective function are either 1 or -1
depending on whether the member is a tendon or a strut, and, in accordance with the
design methodology described, all the end tendons and three side members have
constrained lengths and the other member lengths appear in the objective function.

For the sake of illustrating the method, the target values for the two constrained strut
lengths and side tendon length in this new model are chosen to be somewhat different from
the lengths given in Motro et al.[7] If the target values for the constrained member lengths
are chosen to have exactly the same values as in Motro et al., then the solution yields the
same values as in Motro et al. for the lengths of the members in the objective function

9



with the exception of member 5(c) where the length rounds to 1.642 rather than 1.641.
This shows that the skew three-prism from Motro et al. also validates as a skew prism in
addition to validating as a tensegrity structure.

The final coordinate values for the previous model were used as the initial coordinate
values for this new model. In general, when a new model differs little from a previous
model, the final values for the previous model usually make good initial values for the new
model. To check that the solution was independent of the initial values, the problem was
solved a second time using the initial values for the previous model as the initial values for
this new model. Independence of initial values was a concern here since previous versions
of the design algorithm yielded solutions that were dependent on the choice for the initial
values. With previous versions of the design algorithm, the results were valid tensegrity
structures, but a determinant algorithm with repeatable results, independent of initial
values chosen, was desired.

The length and stress values obtained in the solution of the new nonlinear programming
problem can be found in the columns labeled “(D)” of Table 1. The stress values are scaled
differently than for the validation (see the columns labeled “(V)” for the latter values) and
point up the interesting fact that for skew prisms the stresses in the side members appear to
be exactly proportional to their relative lengths. In addition, it is curious that all the end
tendons have equal stress since this is unexpected in an asymmetric structure. Finally, it is
notable that the twist angle of one end of the prism relative to the other exactly matches
the twist angle for a regular, non-skew prism. (Kenner[5], p. 8, has a detailed description of
the twist-angle concept. The twist angle formula is θ = 90◦ − 180◦

N
where θ is the twist

angle, that is the angle – in cylindrical coordinates – traversed by a side tendon as it goes
from one end of the prism to the other, and N is the order of the prism. For a three-prism,
this formula gives a value of 30◦ for the twist angle. For a four-prism, it gives a value of
45◦. Kenner attributes the discovery of the twist-angle formula to Roger Tobie.[10]) The
final coordinate values can be found in the columns labeled “(D)” of Table 2.

4 Validation of a Skew Four-Prism Design

The validation of the results given in Motro et al.[7] for the skew four-prism was more
problematic. Fig. 6 from that paper is reproduced here as Figure 2. An initial validation of
those results was attempted via the following mathematical programming problem:

10



minimize l216(c)

P1, ..., P8

subject to Tendon constraints:

0.9012 ≥ l21(c)
0.9012 ≥ l22(c)
0.9012 ≥ l23(c)
0.9012 ≥ l24(c)
1.1182 ≥ l25(c)
1.7182 ≥ l26(c)
1.1182 ≥ l27(c)
1.7182 ≥ l28(c)

Strut constraints:

2.5162 ≤ l29(s)
1.5002 ≤ l210(s)

2.5162 ≤ l211(s)

1.5002 ≤ l212(s)

Tendon constraints:

1.8242 ≥ l213(c)

1.8242 ≥ l214(c)

1.8242 ≥ l215(c)

Orienting constraints:

x1+x3

2
= y1+y3

2
= y8 = 0

x6+x8

2
= y6+y8

2
= z6+z8

2
= 0

Base members 13(c), 14(c), 15(c) and 16(c) do not appear explicitly in Motro et al., but
are added here for completeness. The solution of this problem yielded a value of 1.824 for
l16(c). However, unlike Fig. 6 from Motro et al., both ends of the prism are rhombic instead
of one end being square, and neither end is planar in configuration. This result is
illustrated in Figure 3. It is not a skew prism by the definition given at the beginning of
Section 2 since the ends are highly non-planar. In addition, it exhibits a two-fold symmetry
about its central axis so it could never fulfill the non-coincident perpendicular criterion for
strict skewness. The length and stress data for the structure are summarized in the
columns labeled “(V)” of Tables 3 and 4. The relevant data from Motro et al. are

11



summarized in the columns labeled “(M)”. The initial and final coordinate values can be
found in columns “Initial” and “(V)” respectively of Table 5.

It should also be noted that, unlike the procedure for the skew three-prism, for the
four-prism the tendons on one end of the prism could not be assumed to have the same
lengths as the tendons on the other end. For one end of the prism, the tendon lengths are
over twice as large as the lengths for the other end. A solution cannot be obtained
otherwise. The value of 1.824 for the constraints on the lengths of the base tendons was
chosen after experimentation. This value was selected because it yielded a solution where
all the base tendons had equal length. The initial and most reasonable guess for the
lengths of the base tendons 13(c), 14(c) and 15(c) would be 1.0, but this value is not
feasible given the constraints listed. The approximate minimum feasible common value for
the lengths of these three tendons is 1.67. At this value, the length for 16(c), 2.67, is much
larger than its companions when the nonlinear programming problem was solved.

To specify the programming problem so all the base tendons have equal length, a
meta-constraint was introduced and solved. Additional constraints beyond member-length
and orienting constraints cannot appear directly in the nonlinear programming problem
since they will invalidate the solution. When such additional constraints are desired, it is
often possible to apply them outside of the nonlinear programming problem, and in this
context they are referred to here as meta-constraints. Their solution involves another
higher level of iteration.

In this case, the meta-constraint value was computed as the difference between the
common target value for the lengths of 13(c), 14(c) and 15(c) and the solution of the
nonlinear programming problem for the length of 16(c) which results from solving the
problem using the common target value. The target value for the meta-constraint was zero.
The control variable for this meta-problem was the common target value for the constraints
controlling the lengths of 13(c), 14(c) and 15(c). The control variable was adjusted until
the meta-constraint was satisfied, and thus the value 1.824 was obtained. Newton’s method
is a typical technique for solving the meta-problem.

In general, the meta-constraint method treats the solution to the nonlinear programming
problem as a vector-valued, multivariate function whose input is the member and orienting
constraint target values, and whose output is the point coordinate values, the points being
P1, ..., P8 in this case. Meta-constraints can then be applied by using Newton’s method, or
perhaps another method, to adjust the constraint target values so the meta-constraint
values, all functions of P1, ..., P8, are equal to their target values. When the exact method
is being used, this represents a third level of iteration; when the penalty method is being
used, it represents a second level of iteration.

Another approach to validating the Motro et al. skew four-prism design would be to
assume the base of the tensegrity is fixed to a planar surface. However, if the base tendons

12



are constrained to be coplanar and arranged in a square or rhombus, then the rhombus
formed by the explicit tendons of the other end only becomes more folded. It is difficult to
know what to assume here about the lengths of the base tendons, but no assumption seems
to allow the results in Motro et al. to be duplicated in a way that is compatible with both
the tabular data and figures. In addition, while this procedure duplicated the member
lengths stated in Motro et al., the implied stresses were very different: if each set of figures
(that is, the data for the first 12 members for the “Stress” columns “(M)” and “(V)” of
Table 4) is normalized so the absolute values sum to one (see the “Normalized Stress”
columns of Table 4), the weighted average difference is 30 percent (see the “Percent
Difference” column of Table 4; for each member, the weight is the absolute value of the
sum of its two normalized stress entries).

5 An Alternative Skew Four-Prism Design

As an alternative to the above approach to the four-prism, the method described in
Section 3 can be applied to yield a prism much more in the spirit of the skew three-prisms
examined in Sections 2 and 3. This four-prism is illustrated in Figure 4. The method of
Section 3 is applied by constraining the lengths of the struts 9(s), 10(s) and 11(s). The
lengths used for the constraint target values are the ones specified for the four-prism design
presented in Motro et al.[7] An important difference between this structure and the one
described in Motro et al. is that the struts are arranged so the two long struts are adjacent
to each other rather than opposite each other. The programming problem solved was:

13



minimize l25(c) + l26(c) + l27(c) + l28(c) − l212(s)

P1, ..., P8

subject to Tendon constraints:

0.9012 ≥ l21(c)
0.9012 ≥ l22(c)
0.9012 ≥ l23(c)
0.9012 ≥ l24(c)

Strut constraints:

2.5162 ≤ l29(s)
2.5162 ≤ l210(s)

1.5002 ≤ l211(s)

Tendon constraints:

1 ≥ l213(c)
1 ≥ l214(c)
1 ≥ l215(c)
1 ≥ l216(c)

Orienting constraints:

y6 = z6 = z7 = y8 = z8 = 0
x8 = 1√

2

The initial values used for the coordinates were the same as those used for the problem in
Section 4. The solution yielded a figure in which both sets of end tendons formed planar
squares that were parallel to each other just as the triangular ends of the skew three-prisms
of Sections 2 and 3 were parallel to each other. The relevant member data and coordinate
values are summarized in the columns labeled “(D)” of Tables 3, 4 and 5.

It is significant that again, in either end, the member stresses for all four tendons were
equal; also, the twist-angle formula was again satisfied, and the length of strut 12(s) turned
out to be equal to the length of the adjacent strut 11(s). Note that the end points for
members 7(c), 8(c), 10(s) and 11(s) have changed.

14



6 Discussion

The nonlinear programming method described in Section 3 for designing skew prisms has
been tested in designing skew N-prisms for N = 4, 5, 6 and 8 with qualitative results
identical to those described here for N = 3 and 4. In the tests, the end tendons were
constrained to various lengths, not necessarily equal to each other. In the solutions, all the
points of a prism end always fell in the same plane, and this plane was always parallel to
the plane containing the points of the other end. When all the tendon lengths of an end
were equal to one length, and all the tendon lengths of the other end were equal to the
same or another length, the tendons of both ends formed two regular polygons, and the
twist-angle formula from Kenner[5] was satisfied. In addition, in the case of equilateral
ends, it appears that all the stresses for the tendons at one end are equal.

It seems reasonable to conjecture that these properties will hold for any N such that
N ≥ 3. A design for a skew eight-prism is shown in Figure 5. The method also appears to
work for prisms where side tendons skip one or more struts instead of connecting adjacent
struts. (Two struts are adjacent if a single end tendon connects them. Kenner always
assumes side tendons connect adjacent struts and never skip one or more struts.) When
three struts are constrained to have equal lengths, or three side tendons are constrained to
have equal lengths, and the ends are equilateral, a regular prism is obtained as a solution.

These results imply a closed-form non-iterative approach, similar to the one described for
regular prisms in Kenner, will suffice for the design of skew prisms for the cases where the
ends are equilateral. It also seems very possible that closed-form solutions could be
developed for skew and non-skew prisms with non-equilateral ends. Nonlinear
programming may be useful in these situations for pointing out regularities which lead to
closed-form solutions. By a careful choice of struts constrained and target values, it
appears possible to duplicate the symmetry of strut lengths found in the skew four-prism
designed in Section 5 for any even-order skew prism; that is, the number of different strut
lengths can be restricted to half the order of the prism.

Skew prisms can also be obtained by constraining less than three side member lengths, but
in these cases the solution will not be isolated. In these cases, there is a connected
neighborhood of feasible point coordinates that yield the same value for the objective
function and therefore solve the problem. The particular solution reached depends on the
initial values and the iteration path taken to reach the solution. However, the problem
appears to be only one of determinacy, and not one of instability of the structure
corresponding to any given solution.

In the case of equilateral ends, it appears the pattern of stress in the ends is not affected by
the skewness. This property, in conjunction with the skew-invariant twist angle, allows
interesting tensegrity designs to be obtained by taking stacks of prisms such as have been

15



used in mast designs by David Emmerich (see [3], p. 200) and varying skew stage by stage.
An arch based on such a procedure is shown in Figure 6. It was designed by applying
linear offsets to the ends of each stage and validated using nonlinear programming.

This paper examined stability issues very little. In general, solutions to nonlinear
programming problems seem to yield stable structures. As long as a solution to the
nonlinear programming problem is an isolated minimum, not necessarily a global
minimum, it would seem any realization with highly inelastic members should be stable.
However, there are probably pathological cases where a realization of a not-very-isolated
solution would fail when perturbed by external forces. Also, when tendons are more elastic,
the tendons will be able to stretch more and therefore more grossly violate the design
constraints. This also could create a situation where a realization of even a fairly isolated
solution would fail when perturbed. In these situations, a measure of the isolation of a
solution would be useful to determine how robust a realization would be in the face of
perturbing forces.

The main task remaining in exploring further the simple nonlinear programming method
for designing skew prisms is to develop a mathematical proof of its conjectured generality.
This would help understand it and perhaps help widen its applicability to other situations.
The proof would probably also help describe the relationship between the constraint target
values chosen and the gross measures of skewness: the height of the prism and the direction
and amount of skew. The simplicity of the nonlinear programming problem involved may
allow a symbolic solution using standard calculus techniques.

It would also be useful to characterize the limits on the target values for the constraints in
more detail. In Section 3, one compatibility condition for the constraints was mentioned,
but there may be others. Target values that yield uninteresting flat prisms also need to be
avoided. It might also be possible to pose the nonlinear programming problem so that,
instead of parallel planar ends being obtained, planar ends at a prescribed angle to each
other are obtained.

Another interesting topic for future research would be the relative advantages and
disadvantages in prototyping applications of numerical techniques like the one explored
here versus hands-on elastic-modeling techniques like the one explored in [8] or using
Tensegritoy. Certainly this paper examined a situation where the numerical technique has
an advantage: it is hard to imagine an elastic-modeling technique being able to adjust the
strut lengths in enough detail to produce a skew prism. However, there are probably other
design situations where the elastic-modeling techniques have an advantage.

Applications for skew prisms have not been explored. Their configuration could make them
useful in some situations where a cantilevered structure is desirable.

16



7 Conclusions

The nonlinear programming method is shown to be of utility for both designing tensegrity
structures and validating tensegrity designs derived from other methodologies. In addition,
a simple and general nonlinear programming method is described in Section 3 for designing
skew prisms. Application of this method reveals the probable existence of closed-form,
non-iterative formulae for the design of skew prisms.

8 Acknowledgements

Comments by Bin Bing Wang, Mark Schenk and reviewers for the Journal of the IASS
were much appreciated and helped improve its presentation. Remaining faults are the
responsibility of the author.

9 References

[1] Bertsekas, Dimitri P., Nonlinear Programming, 2nd ed., Cambridge, Massachusetts:
Athena Scientific Press, 1999.

[2] Burkhardt, Robert William, Jr., A Practical Guide to Tensegrity Design (2nd edition),
Cambridge, Massachusetts: Tensegrity Solutions, 2005.

[3] Emmerich, David Georges, Structures Tendues et Autotendantes, Paris, France: Ecole
d’Architecture de Paris la Villette, 1988.

[4] Fuller, R. Buckminster and Robert W. Marks, The Dymaxion World of Buckminster
Fuller, Garden City, New York: Anchor Books, 1973, Figs. 264-280, pp. 165-169.

[5] Kenner, Hugh, Geodesic Math and How to Use It, Berkeley, California: University of
California Press, 1976.

[6] Lalvani, Haresh, ed., “Origins of Tensegrity: Views of Emmerich, Fuller and Snelson”,
International Journal of Space Structures, Vol. 11 (1996), Nos. 1 & 2, pp. 45-47.

[7] Motro, René, Sihem Belkacem and Nicolas Vassart, “Form Finding Numerical Methods
for Tensegrity Systems”, pp. 704-13 in John F. Abel, John W. Leonard, and Celina U.
Penalba eds., Spatial, lattice and tension structures, proceedings of the IASS-ASCE
International Symposium 1994 held in conjunction with the ASCE Structures Congress
XII, April 24-29, 1994, Georgia World Congress, Atlanta, Georgia, USA.

17



[8] Popovic, Olga and Konstantinos Sakantamis, “A Novel Approach to Physical Modeling
– Formfinding of Tensegrity Systems”, Journal of the International Association for
Shell and Spatial Structures, Vol. 44 (2003), pp. 15-24.

[9] Tibert, A.G. and S. Pellegrino, “Review of Form-Finding Methods for Tensegrity
Structures”, International Journal of Space Structures, vol. 18 (2003), No. 4,
pp. 209-223.

[10] Tobie, Roger S., A Report on an Inquiry into the Existence, Formation and
Representation of Tensile Structures, Master’s thesis, Department of Industrial Design,
Pratt Institute, June 1967.

10 Figures and Tables

Figure 1: Skew Three-Prism

18



Figure 2: Skew Four-Prismatic System Figure from Motro et al.[7]

Figure 3: Reduced-Symmetry Four-Prism

19



Figure 4: Skew Four-Prism

Figure 5: Skew Eight-Prism

20



Figure 6: Skew Prism Arch

End Force Length Stress
Member points density (M) (V) (D) (M) (V) (D)

1(c) 1 - 2 1.000 1.000 1.000 1.000 1.000 t 1.000 t 0.577 t
2(c) 2 - 3 1.000 1.000 1.000 1.000 1.000 t 0.998 t 0.577 t
3(c) 3 - 1 1.000 1.000 1.000 1.000 1.000 t 1.001 t 0.577 t
4(c) 3 - 5 1.732 1.302 1.303 1.300 2.255 t 2.249 t 1.300 t
5(c) 1 - 6 1.732 1.641 1.641 1.579 2.843 t 2.845 t 1.579 t
6(c) 2 - 4 1.732 1.360 1.360 1.272 2.356 t 2.354 t 1.272 t
7(s) 3 - 6 -1.732 2.024 2.024 2.066 -3.505 t -3.501 t -2.066 t
8(s) 1 - 4 -1.732 2.161 2.161 2.000 -3.743 t -3.741 t -2.000 t
9(s) 2 - 5 -1.732 0.969 0.969 1.000 -1.679 t -1.676 t -1.000 t
10(c) 4 - 5 ? 1.000 1.000 1.000 1.000 t 1.001 t 0.577 t
11(c) 5 - 6 ? 1.000 1.000 1.000 1.000 t 0.998 t 0.577 t
12(c) 6 - 4 ? 1.000 1.000 1.000 1.000 t 0.995 t 0.577 t

Table 1: Skew Three-Prism: Member Data

21



End Initial (V) (D)
point x y z x y z x y z

1 1√
3

0 1 0.379 1.321 0.953 0.191 1.175 0.981

2 −1
2
√

3
−1

2
1 -0.122 0.455 0.954 -0.309 0.309 0.981

3 −1
2
√

3
1
2

1 -0.621 1.322 0.955 -0.809 1.175 0.981

4 −1
2
√

3
−1

2
0 -0.289 -0.500 0.000 -0.289 -0.500 0.000

5 −1
2
√

3
1
2

0 -0.289 0.500 0.000 -0.289 0.500 0.000

6 1√
3

0 0 0.577 0.000 0.000 0.577 0.000 0.000

Table 2: Skew Three-Prism: Coordinate Values

End points Length
Member (M+V) (D) (M) (V) (D)

1(c) 1 - 2 1 - 2 0.901 0.901 0.901
2(c) 2 - 3 2 - 3 0.901 0.901 0.901
3(c) 3 - 4 3 - 4 0.901 0.901 0.901
4(c) 4 - 1 4 - 1 0.901 0.901 0.901
5(c) 2 - 6 2 - 6 1.118 1.118 1.700
6(c) 1 - 5 1 - 5 1.718 1.718 2.053
7(c) 4 - 8 3 - 7 1.118 1.118 1.348
8(c) 3 - 7 4 - 8 1.718 1.718 1.772
9(s) 2 - 5 2 - 5 2.516 2.516 2.516
10(s) 1 - 8 4 - 7 1.500 1.500 1.500
11(s) 4 - 7 1 - 8 2.516 2.516 2.516
12(s) 3 - 6 3 - 6 1.500 1.500 1.500
13(c) 5 - 6 5 - 6 ? 1.824 1.000
14(c) 6 - 7 6 - 7 ? 1.824 1.000
15(c) 7 - 8 7 - 8 ? 1.824 1.000
16(c) 8 - 5 8 - 5 ? 1.824 1.000

Table 3: Four-Prism: Member End-Point and Length Data

22



Stress Normalized Stress Percent
Member (M) (V) (D) (M) (V) Difference

1(c) 0.901 t 5.416 t 0.707 t 0.0418 0.0844 102
2(c) 0.901 t 2.985 t 0.707 t 0.0418 0.0465 11
3(c) 0.901 t 5.416 t 0.707 t 0.0418 0.0844 102
4(c) 0.901 t 2.985 t 0.707 t 0.0418 0.0465 11
5(c) 1.118 t 4.150 t 1.700 t 0.0519 0.0647 25
6(c) 2.577 t 5.699 t 2.053 t 0.120 0.0889 35
7(c) 1.118 t 4.150 t 1.348 t 0.0519 0.0647 25
8(c) 2.577 t 5.699 t 1.772 t 0.120 0.0889 35
9(s) -3.774 t -9.427 t -2.516 t -0.175 -0.147 19
10(s) -1.500 t -4.392 t -1.500 t -0.0696 -0.0685 2
11(s) -3.774 t -9.427 t -2.516 t -0.175 -0.147 19
12(s) -1.500 t -4.392 t -1.500 t -0.0696 -0.0685 2
13(c) ? 2.731 t 0.637 t – – –
14(c) ? 1.824 t 0.637 t – – –
15(c) ? 2.731 t 0.637 t – – –
16(c) ? 1.824 t 0.637 t – – –

Table 4: Four-Prism: Member Stress Data

End Initial (V) (D)
point x y z x y z x y z

1 0 −1√
2

1.5 -0.396 -0.374 0.688 -1.514 0.017 1.183

2 −1√
2

0 1.5 -0.468 0.496 0.912 -1.514 0.918 1.183

3 0 1√
2

1.5 0.396 0.374 0.688 -0.613 0.918 1.183

4 1√
2

0 1.5 0.468 -0.496 0.912 -0.613 0.017 1.183

5 0 −1√
2

0 0.000 -1.498 -0.549 0.000 -0.707 0.000

6 −1√
2

0 0 -0.883 0.000 0.000 -0.707 0.000 0.000

7 0 1√
2

0 0.000 1.498 -0.549 0.000 0.707 0.000

8 1√
2

0 0 0.883 0.000 0.000 0.707 0.000 0.000

Table 5: Four-Prism: Coordinate Values

23


